Attrition Evaluation of Oxygen-Carriers in Chemical Looping Systems **Srivats Srinivasachar and Teagan Nelson Envergex LLC**

Johannes Van der Waat, Harry Feilen, Daniel Laudal, Michael Mann, and Steven Benson Institute for Energy Studies, University of North Dakota

Background - CO₂ Capture

- \succ Chemical-Looping-Combustion (CLC) is an innovative power generation technology for carbon capture at a lower cost and higher efficiency than state-of-the-art Near-pure CO₂ stream produced without using oxygen from air separation

 - Solid oxygen-carrier (OC) used to provide oxygen to fuel
 - Oxygen-depleted solids regenerated separately in air
 - Solid oxygen carriers undergo attrition and loss of reactivity over time Loss due to attrition and loss of reactivity creates significant operating cost burden

Project Objectives and Approach Methodology

> Objectives

- Evaluate attrition characteristics of oxygen carrier materials under high temperature, reacting conditions to establish correlations between process parameters
- Address critical element of CLC loss of OC due to attrition/reactivity degradation

> Methodology

- Basis existing standard, (ASTM D5757), used for determining attrition characteristics of powdered catalysts by air jets
- Incorporate modifications to attain test protocol more representative of chemical looping process conditions

- Evaluated multiple oxyg baseline conditions
- Ilmenite (2), Hematite, Re based, MnO_x-ore, Engineer
- Cyclic operation between oxidation conditions
- Measured reduction/o concentrations at reactor o

Color Settor Color Setor Color Settor Color Settor Color Settor Color Settor Col	Fixed iterartion control Stop Press To Start fixed iteration Auto cycle Target Cycle # 10 10 10 10 10 10 10 10 10 10
Cycle Time () 120	sec Auto cycle Status Idle

- decreased.

Evaluation Strategy

gen carriers at	Temperature	800-1000°C
	Oxidation Composition	90% N $_2$, 10% O $_2$
ed Mud, CaSO ₄ -	Oxidation Cycle Time	4 minutes
red iron oxide	Purge Composition	100% N ₂
n reduction and	Purge Cycle Time	2 minutes
	Reduction Composition	95% N $_2$, 5% H $_2$
oxidation gas	Reduction Cycle Time	4 minutes
	Test Duration (No. Cycles)	500 minutes (~5

> Measure attrition rate by collecting and weighing attrited material \succ Examine the effects of varying jet velocities on the attrition of the oxygen-carriers > Evaluate use of coal as fuel for reduction step on performance of selected oxygen carriers

Experimental Setup

Results - Evaluation Tests

> Ilmenite and Calcium-Based oxygen carriers had lowest attrition rates.

> Iron-Based-Engineered oxygen carrier had highest rate of attrition.

 \succ Hematite displayed a significant breakage event during testing; thereafter attrition rate

> Red Mud and Mn-Oxide-Based materials exhibited attrition rates that were slightly increasing or relatively stable over entire test period.

> Degree of reduction affected attrition and reactivity performance

- Increasing CO/H₂ concentration resulted in better fuel utilization indicating higher reduced state of OC
- Increasing CO/H₂ concentration caused agglomeration (20% 30% concentration)
- Degree of reduction critically important

Results – Effect of Manufacturing Conditions

Sintered Samples-attrition

Effect of sintering on OC performance

- The attrition rate between the two samples exhibited similar trends
- Manufacturing (Sintering) at higher temperature caused a decrease in reactivity

Sintered Samples-reactivity

Reactivity of different OC's at same test conditions

Fe-based carrier under coal injection

Attrition- different OC's

Conclusions

> Methodology: effective tool to downpropensity and reactivity > Successful coal injection tests illustrate application of attrition setup valuable tool for future CLC research.

Results – OC Performance with Solid Fuel Combustion

- CLC reaction commenced quickly as and CO₂ is formed immediately CO lignite injection of upon confirms CLC CO_2 Formation of reaction, as no oxygen was fed to the reactor.
- > The oxygen carrier and steam were sources of oxygen for reaction

Fe-based carrier under coal injection

- select oxygen carriers based on attrition
 - as a

Project Manager: John M. Rockey, DOE STTR; DE-SC0011984

Future Work

- > Effect of operating parameters on attrition and reactivity will be characterized to develop knowledge database and formulate strategies for commercial test service offerings. Expansion of work to study effect of
- cyclonic/impaction conditions on attrition and reactivity characteristics of Oxygen Carriers.

Contact Details

Srivats Srinivasachar, Envergex LLC Phone: (508) 347-2933; Mobile: (508) 479-3784; E-mail: <u>srivats.srinivasachar@envergex.com</u>

coal.

